
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 14, 1009-1018 (1992) 

FLUX DIFFERENCE SPLITTING FOR 1D OPEN CHANNEL 
FLOW EQUATIONS 

FRANCISCO ALCRUDO, PILAR GARCIA-NAVARRO AND JOSE-MARIA SAVIRON 
Departaniento de Ciencia y Tecnologia de Materiales y Fluidos, Faculiad de Ciencias, Universidad de Zaragoza, 

Ciudad Universitaria, Zaragoza 50009, Spain 

SUMMARY 
An upwind finite difference scheme based on flux difference splitting is presented for the solution of the 
equations governing unsteady open channel hydraulics. An approximate Jacobian needed for splitting the 
flux differences is defined that satisfies the conditions required to construct a first-order upwind conservative 
discretization of the equations. Added limited second-order corrections make the resulting scheme robust 
and accurate for the computation of all regimes of open channel flow. Some numerical results and 
comparisons with other classical schemes under exacting conditions are presented. 
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INTRODUCTION 

Mathematical simulation of hydraulic phenomena is becoming increasingly important in engin- 
eering practice since it offers the possibility of cheaply evaluating the response of hydraulic 
systems to a variety of practical situations. Among these, rapidly varied open channel flow 
possesses certain features that make it important to predict but most difficult to compute. 
Supercritical flows with hydraulic jumps and bores are awkward to represent even if a shock- 
capturing method is employed. 

During the last decade much effort has been paid to the numerical solution of systems of 
conservation laws. This effort was mainly driven by the need for accurate and efficient solvers for 
the equations of compressible gas dynamics. Among the techniques developed to accurately 
resolve discontinuities, upwind schemes based on flux difference splitting’,’ have been success- 
fully applied to a wide class of problems involving the Euler equations. 

One-dimensional channel flow can be described by a system of conservation laws, namely the 
St. Venant equations, which resemble in many respects the equations of compressible flow. 
Flux-difference-splitting techniques provide a means for the use of high-resolution schemes based 
on flux limiters. These achieve non-oscillatory solutions while retaining second-order accuracy in 
smooth flow regions. Glaister3 proposed a scheme based on Roe’s Riemann solver and applied it 
to flow in a channel of infinite width. In this paper those ideas are generalized to the more 
practical situation of channels with arbitrary cross-section. 
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EQUATIONS 

It is assumed that one-dimensional flow of water in a channel of slowly varying cross-section with 
sufficiently gentle bottom slope can be described by the St. Venant  equation^.^ They express 
conservation of mass and momentum and can be cast in the divergent vector form 

au aF 
-+-=G, 
at ax 

Q .=( i)' '=( Q2/S+gl,) '  G =  ( :2)' 

S is the wetted cross-section of the channel, Q is the volume flow of water and g is the acceleration 
due to gravity. Zl is the hydrostatic pressure force term, which can be written 

11 = (h-Mrt)dvt, (3) l 
where h is the water depth and a(q) is the channel width at depth q: 

as 
*=ah. (4) 

The source term G2 in (2) accounts for the bed slope, the friction and the variation of the channel 
shape with distance. In this paper only the numerical treatment of the homogeneous part of (1) 
will be addressed and, accordingly, CT is assumed to be a fixed function of the depth for the entire 
channel. For the sake of brevity the actual form of G2 is not given explicitly. The homogeneous 
part of the system is of the hyperbolic type and is responsible for most of the difficulties found 
when it is numerically integrated; namely, its non-linearity can give rise to discontinuous 
solutions currently referred to as bores or jumps. 

The Jacobian matrix of the flux is 

0 A = - - =  
g S / o - Q 2 / S 2  

with eigenvalues and eigenvectors 

u = Q / S ,  c = J(gS/a). (7) 
The eigenvalues of A correspond to the two characteristic speeds and therefore their signs provide 
information about the directions of propagation of information in the channel. With the 
definition of A, an equivalent but non-divergent form of equation (1) is 

au au 
at ax -+A-=G. 

FIRST-ORDER UPWIND SCHEME 

In order to solve (1) with an explicit time-stepping scheme, the domain of integration is discretized 
as (x j , t") ,  where x j = j A x ,  j =  1,2, . . . , and t"=nAt, n =  1,2, . . . . 
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For supercritical flow from left to right both characteristic speeds are positive, indicating that 
information can only travel downstream, so that the following first-order upwind scheme can be 
considered: 

(94 Uy+ = Uy -LAFj- 1/2 ,  

where L=At/Ax and AFj-112=Fj-Fj-1 is the increment of F across the j -  1/2 cell interface. 
Conversely, for supercritical flow from right to left both characteristic speeds are negative and the 
same upwind scheme will read 

Uy+' = Uy-IAFj+ 112. (9b) 

In the case of subcritical flow the two characteristic speeds are of different sign, indicating that 
information travels in both directions or, more precisely, that some contributions are propagating 
upstream while others are moving downstream. In order to construct an upwind scheme valid for 
all regimes and directions of flow, an appropriate decomposition of the flux related to positive 
and negative propagation speeds is needed. Formally one could write 

UJ" = UJ - I AFT+ - LAFT- ',, , (10) 

where AF;+li2 are the increments of flux associated with positive and characteristic speeds 
respectively across the j + 1/2 cell interface. The decomposition should be such that for super- 
critical flows either AFT+llz or AFT,,,, are zero. A suitable way of performing that splitting is 
addressed in the next section. 

ROE LINEARIZATION 

Roe' proposed a technique for constructing scheme (10) for the Euler equations ensuring 
conservation, and Glaister3 applied the same idea to the St. Venant equations for a channel of 
infinite width. In this section the procedure is extended to channels of finite cross-section of 
arbitrary shape in order that the above first-order scheme can be applied to actual channel flow 
computations. 

At every time level and for every pair of adjacent cells an approximate Jacobian matrix A is 
sought that fulfils the following properties. 

(i) AFj+1/2=Xj+1/2AUj+l/2. 
(ii) Aj+1/2=Aj+l/Z(Uj, Uj+l)* 
(iii) A(U, U) = A(U) = aF/aU. 
(iv) A has real eigenvalues with a complete set of eigenvectors. 

Property (i) guarantees conservation of the scheme that relies upon A, while (iii) ensures 
consistency with the original equation. With regard to property (iv) one searches for the matrix 
that has eigenvalues and eigenvectors of the form 

and the problem of finding A is now transferred to that of finding the average values ii and E that 
meet the requirements (iHiv). Such values, and therefore A, exist as will be shown later by 
construction. 
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Following (iv), any increment in the conserved variables U can be decomposed as a linear 
combination of the eigenvectors of A: 

2 

and from property (i) the flux difference is expressed as 

This decomposition provides a means for defining the plus and minus flux increments across 
j &  1/2 of equation (lo), i.e. 

2 

where a* =(a& la1)/2 has been used. Equation (14) guarantees what have been called plus and 
minus flux differences, to be related to positive and negative characteristic speeds respectively. 
This leads to natural upwind differencing in (10). 

After some algebraic manipulations, scheme (10) with flux difference splitting (14) can be cast in 
conservation form as 

(15) n + l -  
Uj  - U; - I (F j*+ l / z  - F j*- 112 ), 

with the following numerical flux: 
2 

F;+ 1 / 2 = t ( ~ j +  1 + F j ) - +  C %j"+ 112 I"+ 112 IE:+ 112. (16) 
k =  1 

In order to calculate the value of u", c" and the Ek, use is made of the vector equations (12) 
and (13). From (12) one gets 

(17) 
1 

=,[+AQj+ 112 +(z&u")ASj+ 1/21. 

Using (17) and (13), a quadratic equation for u" is found whose useful solution is 

J(S j )u j  + J ( S j +  1 )uj+ 1 

J S j + J S j + ,  
C j +  112 = 9 

which is the square root averaging of Roe'. For c' one gets 

When the values of two adjacent cross-sections are equal, if there is no variation of the 
cross-section shape along the channel, their hydrostatic pressure distribution is the same and ,? is 
not defined by (19). By performing the limiting process, one finds the following formula for c": 

if S j + l  - S j # O ,  

if S j + l  - S j = O ,  
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which is consistent with property (iii). It is interesting to note that the approximate Jacobian so 
built is independent of the form of the cross-section of the channel; in other words it is well defined 
whatever the functional dependence of 0 on h may be. 

This Jacobian has the interesting property that whenever the states of two adjacent cells can be 
connected by a hydrauiic jump, it projects only onto one eigenvector whose associated eigenvalue 
corresponds to the velocity of propagation of the jump.'*' This property makes the upwind 
scheme (15), (16) well suited for the computation of rapidly varied flows with the possibility of 
formation of bores. It has, however, the disadvantage of admitting unphysical stationary jumps 
(those in which energy increases across the jump). The cure to this problem is fortunately 
inexpensive. Among the various possibilities the easiest way is to replace the moduli of the 
eigenvalues of A by a small positive number 6 (between 0.1 and 1) whenever these are lower than 
the number itself,6 i.e. redefine 

A more refined treatment results if such correction is performed only when an unphysical jump is 
detected by means of the slope of the characteristics at that point.' These corrections can also be 
viewed as augmenting the numerical dissipation of the scheme to ensure entropy-satisfying 
(energy-dissipating in the case of the St. Venant equations) solutions. Other approaches have also 
been proposed by Sweby.8 

SECOND-ORDER SCHEME 

In this section corrections second-order in space and time are added to scheme (15), (16) based on 
the Lax-Wendroff numerical flux,' which can be written as 

F,)+L;2=t(Fj+l +Fj)-fAj?+l/Z(Uj+l-Uj). (22) 

Aj+ 
instance, it could be defined as 

is the Jacobian matrix (5 )  evaluated at some average of the variables at cellsj andj+ 1. For 

If the approximate Jacobian matrix A constructed in the previous section is used instead, 
numerical flux (22) can be reorganized as 

L L 
F*LW -1 

I +  112- 2(Fj+ 1 +Fj)-t  C Ejk+i,2 I"+ 1/2 I"+ 112 +t 1 ;;+ i i 2  IG!+ 1 / 2 1 ( 1 - 4 ~ ! +  ijz1)5!+ 1/29 
k =  1 k = l  

(24) 

which can be viewed as the first-order upwind numerical flux (16) plus a correction term. 
Following Roeg and Sweby," one can limit this correction in order to obtain an oscillation-free 
second-order method, referred to as the Roe-Sweby scheme in the rest of this paper. Its numerical 
flux is then 

2 
F ) R S  ,+1/2-3(Fj+l+Fj)-+ - C E j k + 1 / 2 1 5 ~ + 1 / 2 I e f + i / z  

k =  1 
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The limiter cp in (25) is responsible for obtaining non-oscillatory solutions despite the presence of 
strong gradients or shocks. It is a non-linear function of the ratio 

Several actual functional dependences on the r's that guarantee second-order accuracy (in space 
and time) as well as monotonicity are available in the literature. Among them the Superbee limiter 
is defined as 

cp(r) =max [0, min(2r, l), min(r, 2)] (27) 

and the Van Leer limiter as 

r +  Irl 
l + r  

cp(r)=---. 

The effect is basically the same for all of them and consists of limiting the amount of second-order 
correction added to the first-order scheme in regions of steep gradients of the flow. 

NUMERICAL RESULTS 

In order to asses the performance of the scheme presented in this paper for actual channel flow 
calculations, several test cases were computed. All the examples consider either rectangular or 
trapezoidal channels of a flat bed with no friction. Comparisons with the exact solution, when 
available, and with results from two other classical difference schemes (McCormack and 
Lax-Friedrichs) are shown. 

Idealized dam-break problem 

The first situation is supposed to simulate the catastrophic failure of a dam. In a channel 
1000 m long, two different heights of still water are separated by a dam. At t = O  the dam is 
instantaneously removed, then a negative wave moves upstream and a surge rushes downstream. 
For the case of a rectangular channel there exists an exact solution based on the theory of 
characteristics." Depending on the height ratio at the initial instant, the flow regime ranges from 
subcritical to strongly supercritical downstream of the dam location. In the case where super- 
critical flow is attained, the water remains critical at the dam site. This problem, although 
somewhat idealized, is very interesting to test the shock-capturing ability of the method. 

The case shown in Figure 1 corresponds to a rectangular channel with an initial height ratio of 
100, which leads to supercritical flow with a maximum Froude number (Fr = u/c) of 2-8 behind the 
surge. The depth ratio of the surge is 17. These can be considered as extremely exacting conditions 
for the difference scheme. Water depth and velocity, compared with the. exact solution, for the 
three different numerical schemes are shown at a time in which the waves have not yet reached the 
boundaries of the computational domain ( t  = 8-8 s). All three were run at a CFL number of 0.95 
and the channel was discretized with 101 points. 

Figures l(a) and l(b) correspond to the Roe-Sweby scheme (water depth and velocity respect- 
ively). The Superbee limiting function (27) was used. The agreement with the exact solution can be 
considered as very good, the depression wave being correctly represented and the bore strength 
well predicted. Its position, however, is one mesh point behind the exact one. 

Figures l(c) and l(d) show the results obtained with the McCormack scheme for the same 
conditions. This classical scheme is still widely used in computational hydraulics for its simplicity 
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Figure 1. Idealized dam-break problem on rectangular channel at t = S % s .  Solid line: exact solution. Dotted line: 
numerical solution. Left column represents water depth, right column represents flow velocity. (a), (b) Roe-Sweby scheme 
with Superbee limiter. (c), (d) McCormack scheme. (e), (f) Lax-Friedrichs scheme. All three run at CFL = 0.95 on 101 mesh 

points 

and good performance even in the presence of discontinuities, though it does not cope well with 
complicated supercritical flows. Addition of artificial viscosity terms was needed in order to 
compute a stable solution, but still no satisfactory results could be obtained. An unphysical 
stationary jump appears at the dam location that spoils the solution. The front height is 
surprisingly well computed but its velocity is mispredicted. 

The Lax-Friedrichs scheme was used to compute the results shown in Figures l(e) and l(f). As 
a first-order scheme it is too diffusive and leads to a strong smearing of the discontinuities present 
in the solution. However, it does not exhibit the unphysical jump of McCormack's method nor 
spurious oscillations, as corresponds to a monotone scheme. 
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It can be concluded that for this test case the Roe-Sweby scheme with the approximate 
Jacobian developed in a previous section can provide more accurate results than other classical 
methods. However, the computational cost is almost doubled. Optimization of the research code 
used to run these tests would perhaps improve the computational efficiency of the upwind scheme. 

The same problem was run for a trapezoidal channel 1 m wide at the bottom with a lateral wall 
slope of unity. The initial conditions were the same as before, as were the CFL number and the 
number of mesh points. Although no exact solution is available for this problem, the main features 
of the flow can be drawn from the numerical solution, which is shown in Figures 2(a) and 2(b) 
(water depth and velocity respectively). Again a depression wave moves upstream while a surge 
wave travels downstream of the channel. It is to be remarked that, owing to the different 
geometry, the bore travels almost 1.5 times faster than for a rectangular channel (for this reason 
the solution at 7.6 s after dam removal was chosen) but is still well captured in only one mesh 
point. The numerical solution shows up stable and well behaved everywhere even though the 
Froude number behind the shock is in this case 7.4. 

\ , 

Bore propagation 

An interesting test case is that of a bore propagating over another one. In a 1000m long 
trapezoidal channel of the same shape as that of Figure 2 a bore of 1-94 m total height propagates 
over still water 1 m deep. Then another bore of 3.1 m total height is introduced above the first 
one. The latter travels faster and, consequently, at a time long enough will catch up with the 
former. The initial distribution of depth of water can be seen in Figure 3(a). This problem can 
show the ability of a method to capture discontinuities. The time increment is calculated every 
time step to fulfil the CFL condition for the largest wave speed in the domain of integration; 
therefore at points where the wave speed is smaller than the maximum, the effective CFL number 
is much lower. Thus the numerical results may deteriorate. 

This effect can be seen in Figures 3(c) and 3(d). The McCormack scheme captures the first big 
jump well but oscillations appear at the second small one. The Lax-Friedrichs scheme is more 
severely affected, and while the first jump is still resolved, the second is completely smeared out. 
Figure 3(b) shows the results obtained with the Roe-Sweby scheme with the Superbee limiter (27). 
They follow closely the exact slution and both hydraulic jumps are captured in only one mesh 
point without any overshoot or undershoot. The CFL number of the calculation was 0.95 and 101 
mesh points were used. 

h(m) 
120 7 

400 400 -200 0 200 400 600 -600 4 3 0  -200 0 200 400 600 

(a) (b) 

Figure 2. Idealized dam-break problem on a trapezoidal channel. Numerical solution obtained with Roe-Sweby scheme 
with Superbee limiter at t=7.6 s; CFL=0.95, 101 mesh points 
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Figure 3. Bore propagation test case. Solid line: exact solution. Dotted line: numerical solution. (a) Initial water depth 
distribution. (b) Roe-Sweby scheme with Superbee limiter. (c) McCormack scheme. (d) Lax-Friedrichs scheme. All of 

them after 60 s at CFL=0.95 on 101 mesh points 
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Figure 4. Bore interaction problem. Solid line: exact solution. Dotted line: numerical solution. (a) Initial water depth 
distribution. (b) Roe-Sweby scheme with Van Leer limiter. (c) McCormack scheme. (d) Lax-Friedrichs scheme. Results 

obtained at t=90 s, CFL=095 on 101 mesh points 
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Bore interurtion 

Finally, the interaction of two surge waves in a channel of the same characteristics was 
considered. It was computed at a CFL number of 0.95 with 101 mesh points. A bore 3.6 m deep of 
100 m3 s-  (Fr = 1.34) propagates downstream over water 2 m deep flowing at a rate of 10 m3 s-  
(Fr = 0.5). The downstream end is closed from the beginning so that a reflected wave 2.6 m deep 
travels upstream. The situation at time t = O  can be seen in Figure 4(a). 

When they meet, the result is two new surges travelling in reversed directions from a zone of 
4.4 m deep water flowing at 103 m3 s- that forms and starts widening. The new created surge 
on the left is almost stationary; the front on the right travels downstream at 7 m s- ’. The exact 
solution can be obtained by solving the non-linear system of equations that results from applying 
the principles of conservation of mass and momentum in the channel just before and after the 
interaction. Numerical results to be compared with the exact water depth distribution after the 
meeting has taken place are shown in Figures 4(b)-4(d), which correspond to t = 90 s. Figure 4(b) 
displays the solution from the Roe-Sweby scheme with the Van Leer limiter (28). The agreement 
is very good, jumps being exactly represented in strength and position and captured in only one 
or at most two mesh points. The-McCormack method (Figure 4(c)) shows an oscillating solution 
around the first jump and an overshoot in the second one. In Figure 4(d) it can be seen that 
Lax-Friedrichs scheme again tends to smear out both discontinuities, but mainly the small one. 

CONCLUSIONS 

A high-resolution scheme based on flux difference splitting and limiters is presented for the 
solution of open channel flow problems. An approximate Jacobian of the flux function is 
constructed that allows conservative upwind discretization of the equations for arbitrary shapes 
of the channel cross-section. This treatment enables efficient calculation of supercritical as well 
as subcritical flows and accurate capturing of rapidly rushing bores. Numerical experiments on 
idealized channel flow configurations show that the present method can cope better with complex 
supercritical flows than other classical schemes. Although the computational cost and complexity 
are higher than for more classical methods, the improvement in the solution appears worthwhile, 
especially for the most exacting flow conditions. 
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